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The problem of electric charge convection in a dielectric liquid layer of high ionic 
purity, when subjected to unipolar injection, is in many ways analogous to that 
of thermal convection in a horizontal fluid layer heated from below, although no 
formal analogy can be established. The problem treated is intrinsically more 
nonlinear than the thermal problem. We consider two asymptotic states of con- 
vection: one where the whole motion is dominated by viscosity, and one where 
inertial effects dominate. I n  each state, two or three spatial regions are distin- 
guished. From the approximate equations that hold in the different regions, 
information about the variation of the different quantities with distance from the 
injector is obtained, and further approximations permit us to establish the 
dependence of the current density ratio I/Io (called the electric Nusselt number) 
on the stabilityparameter T = M2R = eq$,/liTpv, and on 1/R = u/K$,, which is an 
equivalent Prandtl number (e is the permittivity, p the fluid density, K the 
mobility, Y the kinematic viscosity, and $, the applied voltage). In  the viscous 
state, the analysis gives I / Ioa  T*; in the inertial state the law I/Iocc (T/R)a = M* 
is obtained. Since M is independent of the applied voltage, the latter law shows 
the saturation in the electric Nusselt number observed in earlier experiments. 
The transition in the states is associated with a transition number ( M R ) ,  2: 30, 
which is an electric Reynolds number, related to an ordinary Reynolds number 
of about 10. 

The experimental results, obtained in liquids of very different viscosities and 
dielectric constants, verify these theoretical predictions; further, they yield more 
precise numerical coefficients. As for the transition criteria, the experiments 
confirm that the viscous and inertial effects are of the same order when Re -N 10. 
It was also possible to determine roughly the limits of the viscous and inertial 
states. The viscous analysis remains valid up to a Reynolds number of about 1 ; 
the inertial state can be considered valid down to a Reynolds number of 60. 
Schlieren observations show that the motion has the structure of very stable 
hexagonal cells a t  applied voltages just above the critical voltage, which are 
transformed into unstable filaments when the voltage is increased further. At 
even higher voltages, the motion finally breaks down into turbulence. It may be 
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of interest to point out that, when M < 3, the electric Nusselt number approaches 
1, which is equivalent to the situation in thermal convection a t  low Prandtl 
numbers. 

1. Introduction 
I n  dielectric liquids with a high degree of ionic purity, electrical conduction 

results from charge carriers, created by processes on the electrodes, rather than 
dissociation processes in the bulk of the liquid. The current associated with this 
production of charge on the electrodes is referred to as injection current. The 
resulting space charge gives rise to a Coulomb force which, under certain condi- 
tions, causes a hydrodynamic instability, yielding convective transport of the 
charge carriers or a convective current. This convective transport is here studied 
in the simplest case: namely, when the liquid layer is between two parallel plane 
electrodes, a distance d apart, and with injection of identical charge carriers (ions) 
on one electrode only. Earlier experimental observations in liquids, such as 
nitrobenzene, which have a viscosity and density almost like water showed that 
the observed current density was just a multiple of the current density due to the 
drift of the charge carriers, called mobility K ,  and apparently independent of the 
applied voltage #o. Consequently, it seemed possible to describe the phenomena 
simply by replacing the mobility with an apparent mobility, and without intro- 
ducing any hydrodynamical equations (Atten & Gosse 1969). An expression for 
this apparent mobility was derived by Ostroumov (1954), Stuetzer (1962) and 
by FBljci (1969). The latter called it hydrodynamic mobility, to point out its 
hydrodynamic, rather than electrochemical, origin. It was nevertheless puzzling 
that the current density ratio I/Io (called here the electric Nusselt number N e )  
remained independent of the applied voltage, which is vexy much different from 
what is observed in the analogous thermal problem. Recent experiments, carried 
out in liquids of much higher viscosity, however, showed a definite dependence 
of N e  on the applied voltage (Hopfinger & Lacroix 1972). A more systematic 
study, which this called for, using liquids of very different viscosities and dielectric 
constants, revealed, indeed, a variation in N e  a t  sufficiently low values of #o, 
and a saturation in N e  a t  higher voltages. These experimental results are 
presented here; and a simple analysis of this rather original convection problem 
is proposed. 

The instability study of the problem considered was carried out by Atten & 
Moreau (1972). The same instability problem, but with charge injection on a 
free surface, was solved by Schneider & Watson (1970). These studies show that 
the onset of instability is associated with a critical number (independent of d ) ,  
which amounts to a critical voltage. Experimentally it is observed that, near the 
critical voltage, the motion has the structure of hexagonal cells. When the voltage 
is further increased, the motion eventually becomes turbulent. In  the turbulent 
state, and probably before, the mean charge distribution is uniform in the core 
region. Since at the electrodes the velocity goes to zero, and continuity of the 
current requires that the bulk convective transport is matched by drift transport, 
the boundary regions must be characterized by strong gradients. A knowledge 



Ebectro-convection due to unipo2ar injection 

2 

0 j 

c 

- -  
18 
- 

54 1 

FIGURE 1. Representative distribution of mean charge and electric field: (a )  no motion; 
( b )  in turbulent state of motion without molecular diffusion; (c) turbulent state with 
molecula,r diffusion. 

of the structure of these regions is thus important in understanding the steady- 
state convective transport of the charge carriers. 

A first attempt to analyse the convective charge transport was made by 
Hopfinger & Gosse (1971). In  this work, only the tqansient state was considered 
(i.e. the state established when a step voltage well above the critical value is 
suddenly applied, and a ‘turbulent’ layer appears near the injecting electrode, 
until the whole space between the electrodes is invaded by it). In  this case, a 
strong mean charge gradient extends from the injector. up to the interface 
between the turbulent and non-turbulent fluid, which justifies the assumption 
of a predominant gradient-type charge transport. The steady-state electro- 
hydrodynamic convection problem is, although conceptually simpler, com- 
plicated, owing to the asymmetrical nature (see figure 1 ( b ) )  of the charge and 
electric field distributions, and the fact that the boundary conditions on the 
mean charge density are functions of the state of motion. Furthermore, the body 
force term is nonlinear. For these reasons, the experimental results are em- 
phasized, and at  this stage we content ourselves with a rather simple analysis, 
mainly in the hope of clarifying the physical phenomena. 
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2. Governing equations 
The equations governing the problem are in non-dimensional form 

aui ap 
axi ax< 

(Ri- 0 2 )  ui = - Ru.- - R- +- M2RQEi, 

E is the dielectric constant or permittivity of the fluid; Q the electric potential 
($,, the applied voltage); Q the charge density and E the electric field. The other 
variables have their usual meaning. In ( 2 )  the diffusion term is neglected, since its 
contribution to the current density is small compared with the mobility current 
density. The characteristic parameters that appear are 

pis the density of the fluid; v is the kinematic viscosity. It is the number T = M2R 
that plays the role of the Rayleigh number. Equations (1)-(3) result in the 
following equations for the mean charge distribution, the charge fluctuation and 
the velocity fluctuations, taking into account that, in the problem considered, 

The co-ordinate system is such that the plane of the electrodes is parallel to 
the x, y plane; and z is measured perpendicular to it, with the origin a t  the 
injecting electrode. Integration of (5) gives 

QE-kwq = I. (8) 

This is the non-dimensional current density I = I*d3 /K~$& In  (7) the term 
w(dQ/dz) represents production of charge fluctuations as usual, the term 2Qq 
represents decay of charge fluctuations due to the Coulomb repulsion, and 
z (aq /az )  represents production or decay of charge fluctuations due to the drift 
of the charge. In  (5)-(8), terms in the electric field fluctuation were neglected 
compared with terms in E .  This is justified in the core; but it may be questioned 
in the boundary regions. However, since qe 6 QE, and since QE is a fraction of 
wq, these terms never become very important. 
- 
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The boundary conditions on the velocity field are the same as in the thermal 
problem. For the electrical variables we have 

$ ( O )  = 1, $(1) = 0, & ( O )  = Oot>B(O) = 0. (9) 

Q(0) = c;c corresponds to the asymptotic case of space charge limited current, 
obtained when the injection is strong. Without motion, the electric field and 
charge distributions are in this case E = $28, Q = Sz-Q, giving 

I, = QE = 3. (10) 

3. Classification of the mechanisms 
Since molecular diffusion plays no role in the problem, on the boundaries the 

convective transport must be matched by drift transport. The ratio of molecular 
diffusivity to mobility is given by the Einstein relation DIK = kT /e .  This means 
that molecular diffusion is limited to a region in which the potential drop is of 
the order of & V. Neglecting diffusion has an important consequence on the mean 
charge distribution near the collector (as illustrated in figure 1).  Experiments in a 
very viscous liquid have been carried out, to make the boundaryregions accessible 
for measurements using the Kerr electro-optic effect. The experimental results 
(presented in $8) show clearly that a structure similar to figure l ( b )  prevails. 
Convective transport is thus indeed matched by drift transport: any contribution 
of molecular diffusion would be within the region of predominant drift transport. 
It follows that a region near the receiving electrode exists where convective 
charge transport is against a relatively strong gradient of mean charge, a situation 
which to our knowledge has never been encountered before. Kraichnan’s (1962) 
mixing-length analysis of thermal convection a t  arbitrary Prandtl numbers 
would seem to be well suited for a first analysis of the present problem, since the 
equivalent of the Prandtl number is i/R, which depends not only on the pro- 
perties of the fluid, but also on the applied voltage, and consequently ranges in 
one experiment from small to large values. Indeed, such an analysis seemed to 
give good results (Hopfinger & Lacroix). But more extensive experimental 
investigations revealed that the essential parameter characterizing transition 
in the convection states is 1cfR (equivalent to T I M ) ,  rather than R, which is an 
electric Reynolds number, related to an ordinary Reynolds number. 

Thus, two asymptoticstates are to be considered. One corresponds to 1cIRsmall. 
This means that viscosity dominates throughout the space. I n  this case, there 
are two spatial regions of distinct charge-transport mechanisms. But it is 
convenient to consider the three regions: (i) z < zK ,  dominant drift transport; 
(ii) zK < z < zg ,  dominant convective transport and strong gradient of mean 
charge; (iii) zu < z < i d ,  dominant convective transport and weak gradient of 
mean charge. The other asymptotic state corresponds to high values of M R .  
This implies that eddy viscosity i s  everywhere dominant. The two regions in this 
state are (i) z < xu, where strong gradients of mean charge exist; (ii) zg < z < i d ,  
weak mean charge gradient. Note that here zK < zs. 
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4. Analysis of the case of small MR 
4.1 .  Velocity distribution 

The analysis at  low values of IMR is based on two assumptions. (i) There exists 
a cellular or quasi-cellular motion, which can be characterized by a well-defined 
wavenumber. (ii) As the number T increases, the velocity field remains similar, 
so that 

with max Iw,(z)l = 1 .  Following Kraichnan's analysis, the thickness zK could 
be defined by the condition that, at z = zK ,  the convective charge transport 
represented by Wq equals the mobility current Qg. A more meaningful definition 
in the present problem is that zK specifies the distance from the electrode where 
the fluid velocity equals the ion velocity, i.e. 

w(zK) = B ( z K )  = 2,. 
This definition is motivated by the equations. For, when it is assumed that q 

and w are in phase (Wq = wq) we obtain from (5) and (7 )  (in which only the 
important terms are retained) equations for aq/az and dQ/dz in which these 
gradients are multiplied by ( w ~ - ~ ~ ) ,  showing the particularity of the point 
z = z K .  Furthermore, since at z = zK there may be locations where the fluid 
and ion velocity compensate each other, the charge density a t  these locations 
vanishes, which means that q(zK)  _N Q(z,) = QK, and consequently 

~ ( Z K )  2 E K Q g .  (1-2) 

From the boundary conditions on the electrode (w(0) = aw/az(O) = 0 ) ,  it follows 
that close to the electrodes the velocity distribution is quadratic, so that when 
zE is small enough w(z) can be written as 

W(2) = AW,(Z) N A h 2 ,  2 Z K .  (13) 

4.2.  Expression for the current density 

In  the vicinity of the injector, the convection current is negligible (i.e. I = QE); 
consequently, R(z) = az* and Q(z )  = +ax-*. At z = zK,  the convection influences 
Q appreciably, but 3 very little. Thus EK 2: azk,  and 

QK 2: I/2EK g K / 4 z K .  (14) 

Equation (7) in this spatial region may be written as 

Ea'l+2Qq N -W-&. 
az 

Substituting in (15) for i? = az* and Q = 6az-4, and integrating it, gives 

q(z)  - &&Kz/zK,  z < z6(* 

Owing to the approximation to &, q is under-estimated; this is notinconsistent 
with q(zK)  2: QK. The latter relation, together with (12)-( 14), yields an expression 
for the current density in the form 

I N &E&h*A4. (16) 
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4.3. Evaluation of EK 
In the thermal problem, the analysis of the boundary layers gives the expected 
expression for the heat flux, because the temperature variation is confined to the 
boundary layers. In  the problem considered, the electric potential drops through- 
out the space, including the core. It is therefore necessary to analyse all the 
regions. In  regions (ii) and (iii), the fluid velocity is higher than the ionic velocity; 
one might expect return columns of charge-free liquid, indicating that q N Q. 
This is verified by an order-of-magnitude analysis of (6) and ( 7 ) ,  which are more- 
over satisfied by QK z-l. Then we can approximate q and Q in region (ii) by 

q N Q = Q,z,/z. 

In region (iii), characterized by a weak gradient of 8, q and Q are approximated by 

I 
N- 

I 
q ( z )  = Q ( 2 )  = Q(4) = - 

E(fr)+w(&) - l + A ’  

The boundary zff between the two regions is such that 

Integration of Poisson’s equation dE/clz = Q between zK and 3, using successively 
the two above expressions for Q, subject to the approximate condition E(fr) = 1, 
gives, after some rearrangement, 

A plausible approximation of wo(z) is 16z2(1 - z ) ~ ,  which leads to h = 16. With 
this value of A ,  EE remains constant within 2 :h when A varies from I to 15 
(BE 2: 0.8). But the validity of (17 )  is limited by the condition zff 6 $, which 
gives A d 12. This analysis leads to the conclusion that the electric field at  z = zK 
is practicallyindependent of the velocity norm A ,  and consequently the mobility- 
dominated layer is characterized by a constant field drop (since E(0)  = 0) .  
Equation (16) can then be written as I ?  1-4Ag. This finally gives the electric 
NusseIt number 

Ne = I/I, = $I 2: 1.2AB. (18) 

4.4. Relation between A and T 
The relation between A and T is obtained from (6), in which the inertial terms are 
neglected, and which, when multiplied by ui and integrated from 0 to 1, gives 

By the similarity assumption for the velocity distribution, the left-hand side is 
proportional to A2. The first integral on the right-hand side vanishes, and the 
second integral can be written as 

35 F L M  69 
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z& specifies the thickness of the mobility-dominated layer on the collector. Since, 
in the mobility-dominated layers, the convection may be neglected, the only 
integral left is the second on the right-hand side. This can be approximated by 

dE2 
dz 

wo(z) -ax. E(z)  wo(z) q(z) dz E +TA 

q ( z )  2~ B ( z )  = dE/dz ( z )  has been used, which is valid in regions (ii) and (iii). If 
zK and z& are sufficiently small, the gradient dE2/dz is practically independent 
of A,  and the integral is practically a constant, giving 

A N T .  (19) 

Ne 'V Tt for M R  small. (20) 

The expression for Ne can finally be written in the form 

5. Analysis for high M R  values 
5.1. z dependence of the quantities in region (i) 

Here the number T is considered to be high enough to justify the assumption 
that the eddy viscosity is dominant everywhere. The boundary layers are 
assumed to be in turbulent motion, and the laminar sublayer as well as the 
mobility dominated sublayer are neglected. - 

Unipolar injection into nitrobenzene under high voltage is characterized by a 
quasi-linear electric field distribution in the core, and consequently by a nearly 
constant distribution of mean space charge density. This is attributed to the 
efficient mixing property of turbulence. As the space charge density on the 
injecting electrode is very high, this observation is evidence for the existence of a 
boundary layer with a strong mean charge gradient defined as region I. The 
production of charge fluctuations is associated with dQ/dz. Therefore it is confined 
to this region. An order-of-magnitude analysis of (7 )  

lw'dQ/dzI N Iw'dq'/dz] (21) 

(where w' denotes the root-mean-square z component of the fluctuating velocity 
field), and of (6) 

taking into account ( 5 ) ,  leads to the following expressions for the z dependence of 
w', q',-E and Q; 

Eoc z t ,  QCE 2-8. 

'These are valid in region (i). The variations of E and Q in this region are thus 
identical to the variations of E and Q in the state of no motion. 

5.2. Relation between w' and E 
The relation between the root-mean-square value of the fluid velocity and the 
electric field is crucial for the calculation of the current. An energy argument 
(used by Veronis (1966), in the case of the thermal problem) gives us an upper 
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bound for w'. Since we consider here the turbulent state, we may assume that the 
electric charge is transported by blobs of fluid moving away from the injector, 
and the kinetic energy is here generated by a conversion of the electrostatic 
energy. Between the injector and the outer region of the charge boundary layer 
(region of strong Q variation), the electric field varies from zero to E(zg). The 
electrostatic energy in a blob which extends from the injector up to zg can be 
evaluated as d < &E2(zg). It may be assumed that this energy is completely 
converted to kinetic energy with a predominance in the wr component. We then 
have 

In non-dimensional form this gives 

&pwQ 6 & € B ( Z , )  or w) 6 (€/p)*E(Zg). 

wr < NE(zs).  (23) 

This energy argument is implicit in (21). If it is assumed that q' < &, this equation 
can be written as 

which gives (23) with l? = w' = 0 a t  z = 0. 

5.3. Expression for the current density 

To obtain the expression for the current density, it is necessary to take into 
account the core in which dQ/& takes low values. As already pointed out, the 
production of charge density fluctuations in this region is negligible, so that q' 
is a decreasing function of z (Coulomb and eddy damping). The vorticity pro- 
duction on the contrary is not confined to region (i). It decreases like Eqr, so that 
the variations of w' with z are not very importad 

Let us consider now a point of abscissa z1 < I in the core, such that 

dQ - (zl) N 0. 
dz 

At z = zl, the relation w' - M E  is still valid (in order of magnitude) but q' N Q 
is not. To evaluate the ratio q'/&, let us use the current continuity equation ( 5 ) :  

From (22) and (23)) we deduce 
Idw'/dzl N Mq'. 

Qq' I W ~  aq'/azl ; 
The main terms in (7) give the balance (for the core) 

and (24) leads to 

For M values significantly higher than 1, we obtain 

Q2 N Mq'2 + Qq'. 

( 2 5 )  
35-2 

q'/Q N M-4. 
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Putting w'(zl) z yMZ(z,) and q'(xl) 2: &M-@(z,), the current density is 
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I = QZ+w 2: QE+aq'w'21 QE(xI)[l+pMq, (26) 

with ,8 = ay8. (a is the mean correlation coefficient of the velocity and charge 
density fluctuations: here a 2: i.) 

If the mean charge density can be approximated by g = const., the mean 
electric field is 

The electric Nusselt number is then (xl < t ) ,  given by 

E(2) = 1 - @ + Qz. 

In  the thermal convection problem the principle of maximum dissipation, 
equivalent to a maximum heat flux, has led to good results (Malkus 1954; 
Spiegel 1962). In  the present problem it is seen from (27) that Ne is a maximum 
for Q = 1. This yields 

Expression (28) states that Ne is independent of T or R, which reflects the 
saturation observed previously. Since p is of order 1, we can conclude that, a t  
high values of M ,  the Nusselt number varies as MB. 

Ne 2: $(l +,8MB). (28) 

6. Transition in the states of convection 

equating the expressions for Ne in both regions, 
The character of the relevant transition number can be obtained by simply 

giving 

C, T4 2: C, M3, 

M R  N const. 

This is evidence that transition is indeed characterized by a number M R ,  which 
is an electric Reynolds number. 

Since transition is due to a change from a viscous to a nonlinear flow regime, at  
the transition the viscous terms in (6) will be of the same order as the inertial 
terms, i.e. 

A pseudo-cellular model (as employed by Kraichnan) would give a Reynolds 
number of order 71. Moore & Weiss (1973) indicate that the analogous thermal 
transition from viscous to nonlinear flow occurs at  a Reynolds number Re, N 10. 
When taking this value as the transition value, we can write in the viscous 
approximation Re, = RAT = 10. 

From (19) we have A - T; and a more precise expression is 

IV2UtI - Rfujau,pXji(. 

A 2: TIT,. (29) 

Such an expression has been obtained by FBlici in the case of weak injection. 
Also, Atten & Lacroix (1974) have shown that at  the onset of instability the 
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possible stable laminar motion is characterized by a maximum fluid velocity 
higher than the ionic velocity. (A value of A 2: 1.2 was obtained, with e ( 0 )  = 10.) 
With (29) we get 

When taking the experimental value of T, 21 90 (see table l ) ,  we obtain 

( M R ) ,  21 30. 

The same value must naturally be obtained when extrapolating the turbulent or 
high IMR approximation. In  this state, the Reynolds number may be expressed by 

Re N R max (~'(2)). 

The foregoing analysis has shown that, in region (i), w' N M B ,  and that w' 
decreases with x in the core. With Q = 1 in the core, we get for the velocity 

Hence, from Re = 10, ( R M ) ,  21 201b. 

For the two numerical values of ( M R ) ,  to be equal, we must have b 21 $, which 
in turn gives for the velocity max w'(x) 21 Q M .  This shows a saturation in the 
non-dimensional velocity. 

7. Experimental apparatus and procedures 
7.1. Test cell 

The experimental apparatus used for this study is very similar to that used in 
previous studies (Atten & Gosse 1969; Lacroix & Tobakon 1972). The test cell is 
a Teflon unit containing two circular plane metal? electrodes (32 mm in diameter), 
which are covered with ion exchange membranes. The gap between the electrodes 
can be varied between 0 and 1 em. The membranes (AMP 60) are anionic or 
cationic, depending on the polarity of the ions to be injected. One serves as 
injector, the other as collector. With these composite electrodes, a strong and 
reproducible injection of known ions into polar liquids is achieved. The test cell 
has two optical windows, through which the electric field distribution is measured 
by the electro-optic Kerr method and the liquid motion is observed by the 
schlieren method. 

7.2. Purification circuit 

The commercially available dielectric liquids have a residual conduction either 
due to the presence of electrolytic impurities (which are more or less dissociated, 
depending on the dielectric constant of the liquid), or possibly due to an auto- 
dissociation of the liquid itself, as is the case for ethanol. To study the phenomena 
due to unipolar injection only, it is necessary to reduce this residual conduction, 
so that it becomes negligible as compared with the current due to the ion injection. 

t For some of the schlieren observations, metal plated and varnished glass electrodes 
were used. 
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A sufficient purification is obtained by circulating the liquid periodically through 
a purification circuit, which contains an ion purification cell, preceded by a 
chemical purification system. The test cell is part of this circuit; but it is isolated 
from it during the measurements, simply by closing some stopcocks. This circuit 
also contains a heat exchanger, which allows one to keep the temperature 
constant throughout the measurements. 

7.3. Choice of the electrode separation 

The stability criteria, as well as the variation of the electric Nusselt number, do 
not depend on the thickness of the liquid layer. (Note that, on the contrary, the 
Rayleigh number depends on d.) But it is necessary to vary d in  the experiments, 
for the following reasons. The range of values of the applied voltages is specified 
by the instability criterion, and by the value of the electric Reynolds number, 
which characterizes transition from the viscous to the inertially dominated state 
of motion. For the most viscous liquids, this may require voltages ranging from 
a few volts to tens of kilovolts. Since the residual conduction current in the ohmic 
range is cT$,/d (a is the conductivity of the liquid), and the injection current is 
roughly Ke@/d3, it is necessary to keep, a t  small values of $,, the distance as 
small as possible, for the injection current to remain dominant. But the geo- 
metrical imperfections of the membranes impose that d > 0.1 mm. On the other 
hand, at high voltages, a large gap must be chosen, so that the field strength 
remains below the value that causes a breakdown of the liquid. 

7.4. Electro-optic Kerr method 

The electric field distribution is measured using the Kerr electro-optic effect. 
Figure 2 shows a schema of the optical arrangepent used. Under the influence of 
the electric field, the liquid behaves like a uni-axial birefringent crystalline plate, 
which has one of the principal axes aligned with the electric field. The optical 
phase shift is given by S = 2 n B A E 2 .  (A is the optical path length, and B the Kerr 
constant of the liquid.) The monochromatic linearly polarized light beam used 
has a plane of polarization whose angle is a t  45" with respect to the direction of 
the electric field, and it emerges from the cell elliptically polarized. The degree of 
elliptical polarization is measured by means of an analyser rotating a t  constant 
speed and a photo-detector (Budde 1962). The instrumentation makes it possible 
to measure directly the absolute value of cos 6. The light source is a helium-neon 
laser; and an optical system gives a light beam in the cell about Omlmm in 
diameter, and consequently permits measurements very close to the electrode. 

8. Experimental results 
Table 1 lists the physical properties of the liquids used in this study. The 

viscosity ranges from 0.6 to 90 centipoise, and the relative dielectric constant 
from about 6 to 69. The mobility values of the injected ions in the liquids used, 
obtained by conductimetry, are given in the lit,erature, except for the pyralenes.? 

t The French products named pyralenes are chlorinated diphenyls. In English-speaking 
countries their trade name is Aroclor. 
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FIGURE 2.  Schema of the Kerr electro-optic arrangement. OP, principal direction of the 
polarizer; O A ,  principal direction of the rotating analyser; 0 2 ,  direction of the electric field. 

For the latter liquids the mobilities have been measured in this work both by 
conductimetry and by the time of the passage of the ions from the injector to the 
collector when a step voltage is suddenly applied. The value of the step is lower 
than the critical voltage. 

8.1. Variations of the current density 

For all the liquids studied the variation of the steady-state current density as a 
function of the applied voltage has been measured for various gap widths. All of 
them exhibit the same transition, verifying the independence of the phenomena 
of the gap width. The observations are illustrated for one liquid: namely, 
pyralene 1460. 

I n  figures 3 and 4, the steady-state current density is plotted, respectively, as 
a function of the applied voltage for a fixed d, and as function of the gap width 
for a fixed voltage. These graphs show three states of charge transport. For 
applied voltages smaller than the critical value q5c N 50V, the current varies as 
$:/d3. At values somewhat above $c, it varies like $!Id3; and at values above 
$* 2: 1OOOV,  the current varies again, as in the motionless state, like q5g/d3. But 
the schlieren observations show that, at  these voltages, the liquid is very agitated, 
and that it is probably turbulent. 

It should be noted that, for the liquid tested, the onset of instability can be 
determined only for small gap widths (d 6 0-4mm), for which the residual 
current is sufficiently small. (For certain liquids, e.g. ethanol and methanol, this 
residual current cannot be made small enough, owing to the practical lower bound 
for d ,  so it was not possible to determine $c from the measurement of the steady- 
state current.) The transition value, conversely, is determined with large gaps 
(see 9 7.3).  The value # c  N 50 V was not deduced from figure 3, but from a more 
detailed study of I against $o near $c. We may also point out that this electrical 
determination is a t  least as reliable as the deduction of q5c from optical measure- 
ments (see $8.3).  

In  general, the current is a function of the parameters M ,  R and a ( O ) ,  and it can 
be written in the form I = ( ~ ~ p / d 3 ) f ( ~ ,  R, @(o)). 
Only the number &(o) may be a function of the gap width ( a ( 0 )  = & * ( O )  d2/lsQo). 

Since the experimental observations show that the functionfis independent of d ,  
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FIGURE 3. Variations of the electric current with applied voltage for fixed gap widths. The 
dotted branches of the curves, whose slope approaches one at low current densities, 
correspond to  the ohmic range (the electrode surface is 8 cm2). 

I must be independent of Q ( O ) ,  which means that & ( O )  is either constant or high. 
Since, at  values of q50 < 9,) it was found that Q(0) is higher than the value necessary 
for the assumption of space charge limited current to be valid, it can be concluded 
that g(0) is always high. This is of importance for the validity of the established 
Nusselt number variations. 

8.2. Electric Nusselt number and trunsition 

In figure 5 the measured current densit,ies in pyralene 1460 are presented in the 
form of an electric Nusselt number. By definition, this number has a value of 1 
when #o < $,; and, in accordance with the observed current densities, Ne varies 
like $4 for values of $ < #T, and is a constant afterwards, indicating saturation. 
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FIGURE 4. Variations of the electric current with gap width for fixed applied 
voltages. The dotted branches of the curves correspond to the ohmic range. 

The results obtained for all the liquids are shown in figure 6, where the Nusselt 
number is presented as a function of T/(T,)exp. As is predicted by the theoretical 
analysis, all the liquids have the same branch Ne = (T/T,)*. The saturation value 
of Ne depends on the physical properties of the liquid, and somewhat on the 
nature of the injected ions. If this saturation value Ne, is plotted as a function 
of M (figure 7),  the expression 

Ne, = (I/1Js = (+M)*, 144 > 4, 

can be deduced. This is in reasonably good agreement with the theoretical 
predictions. 

The transition from the viscosity dominated hydrodynamic state to the 
inertially dominated state is gradual, so, a t  a certain applied voltage, the viscous 
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FIGURE 5. Electric Nusselt number variations with applied voltage in pyralene 1460. 
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FIGURE 6. Electric Nusselt number versus the stability parameter T / (  TJIIp in different 
liquids: (i) methanol (H+); (ii) chlorobenzene (Cl-); (iii) ethanol (H+); (iv) nitrobenzene 
(Cl-);(v) ethanol(C1-); (vi)propylenecarbonate (Cl-); (vii) pyralene 1460 (Cl-); (viii) pyralene 
1500,35"C (Cl-); (ix) pyralene 1500, 20 "C (Cl-); (x) pyralene 1499 (Cl-). 
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as a function of the parameter M .  
FIGURE 7. Saturation value of the electric Nusselt number 
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FIGURE 8. Dependence of the transition value RT = Kq5T/v on M .  

and inertial terms will be of the same order. The transition potential q5T is defined 
by the intersection of the two branches of the curve Ne = f (T ,  M )  (i.e. the inter- 
section between Ne = (T/T,)* and Ne = (QM)i) ,  which yields 

This value is confirmed by figure 8, where RT = $TKi/v is plotted as a function 
of M .  

(MR), = QTc 2: 30. 
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FIGURE 11. Electric field distribution in liquids of low viscosity. 
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8.3. Schlieren observations near q5c 
Schlieren observations made in pyralenes 1460 and 1500 near the critical voltage 
confirmed that the change in the slope of the current density from #:Id3 to 
&a3 corresponds to the onset of instability. These observations were made at 
small gap widths (0.1-0.7 mm), and with transparent electrodes, consisting of 
glass plates onto which a conducting layer (silver or indium oxide) was deposited. 
A varnish was then applied, which has properties similar to the ion exchange 
membranes (FBlici & Sauviat 1972). At voltages below @c the liquid remains 
motjonless, whereas, just above @,., very stable hexagonal cells are established (see 
figure 9, plate l),  a structure well known as BBnard cells in the thermal problem. 
The width of these cells is about twice the thickness of the liquid layer. When the 
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FIGURE 12. Electric field and charge density distribution in pyralene 1500. 
7 = 51 cP; d = 8mm; q50 = 25 kV. 

applied voltage is further increased up to 2-3 times #,., this cellular structure is 
progressively replaced by unsteady filaments (figure 10, plate 1). Such a quasi- 
cellular structure has already been observed between a rigid electrode and a free 
surface (Avsec & Luntz 1937; Schneider & Watson 1970). 

8.4. Electric Jield distribution 

Copsidering the value of the Kerr constant and the optical path length A = 32 mm, 
a measurable phase shift 6 is obtained only a t  sufficiently high applied voltages 
(corresponding generally to more than 10 kV cm-1). Also, since no reliable 
measurements can be carried out in a gap < 1 mm, it is not possible to measure 
the electric field distribution in the state Neoc T4. So, for liquids of low viscosity, 
the measurements can be carried out only in conditions such that M R  % (MR),. 
The observed distribution of the electric field in this case is apparently linear 
throughout (figure 11); the boundary layers are not even visible. The non- 
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dimensional mean charge density deduced from these field distributions is 
independent of the applied voltage and the gap width; and it has a value of 
1.2-1.3 in nitrobenzene, propylene carbonate and pyralene 1460. This value is 
close to the value 1, deduced from the maximization of the current employed in 
5 5. In chlorobenzene, the field distribution is also linear, indicating that turbu- 
lence makes the charge uniform. But the mean charge density is only 0.7. This 
can be explained by the small value of M .  

In liquids of high viscosity, like the pyralenes 1500 and 1499, the measured 
field distribution corresponds to values of M R  of only a few times (MR),. I n  
this case, boundary layers are clearly visible on the collecting electrode as well as 
on the injecting electrode (figure 12). On this curve, three zones can be distin- 
guished : the boundary layer on the injector, where the mean charge density falls 
off rapidly; a core, where Q remains practically constant and its value is of order 1 
(& ci 1.2); and a boundary layer on the collector, where Q increases again. Taking 
figure I 2  as an example, the value of the mean charge evaluated from the 
measured field distribution a t  a distance of about 0.1 mm from the electrode is 
3.4, and the corresponding current due to the mobility (i.e. QE) is only 15 94 of 
the total current. From continuity of the current, it follows that, on the electrode, 

approaches very high values, which verifies the hypothesis of space charge 
limited injection (Q(0) = co). 

When the square of the electric field is plotted as a function of x ( x  measured 
from the electrode), a linear variation is indeed obtained in a region whose upper 
bound z is zl. This behaviour is in agreement with the prediction that followed 
from the order-of-magnitude analysis of the governing equations (9  5). The 
currents, due to convection and mobility, thus remain in constant proportions in 
this region, the latter being small, however. By varyipg the applied potential 
and the gap width systematically, it was possible to show that x1 varied as 
vd/& The Reynolds number associated with zl, assuming that the velocity is 
given b)- ( e /p )*Z(z l ) ,  is 

R e  (xl) N ( e /p )*E(z l )  xl/v  N 20. 

This means that the motion a t  x1 is dominated by inertial terms, and becomes 
progressively more turbulent for z > zl. 

9. Discussion and conclusion 
Schmidt' & Milverton (1935) determined the critical Rayleigh number from 

the change in slope of the heat flux against Rayleigh number. This method has 
been employed in the present study; and the schlieren observations have indeed 
given evidence that the value of q50, corresponding to the change in slope of the 
current density, is the critical value for the onset of instability. I n  the motionless 
state, the current density varies like eKq5i/d3, as long as the non-dimensional 
charge density on the injector remains constant, or is sufficiently high that the 
transport is limited by space charge (Q(0)  > 5). Since this is indeed the case, any 
change in the variation of the current density with q5,, must be due to the onset of 
convection. 
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The experimental critical voltages give a value for the instability number 
(Tc)exp = e$,/yK which lies between 80 and 90, depending on the liquids used 
(see table l),  whereas (q)th = 161 (Atten & Moreau 1972). It was thought that 
this discrepancy might be attributed to an instability associated with finite 
perturbations. Indeed, a recent nonlinear stability analysis (Atten & Lacroix 
1974) shows that, under subcritical conditions, a stable cellular motion may 
exist, with a fluid velocity equal to or greater than the velocity of the ions; and 
a critical value of 118 was obtained for Q(0) = 10. Experimentally, the existence 
of two critical numbers, one associated with small disturbances, the other with 
finite-amplitude disturbances, has been demonstrated by the occurrence of a 
hysteresis loop in 1 against $, near $,. The values of (T,)exp given in this paper 
correspond, however, to small perturbations, not to finite ones. At this stage of 
our work, we thus have no satisfactory explanation for the discrepancy between 
( % ) e x p  and (Tc)th. 

As $, is increased gradually beyond $,, the electric Nusselt number grows 
as T J ,  then reaches its saturation value (figure 6).  It has been verified experi- 
mentally that this transition from Ne cc T4 to Ne = const. is characterized by the 
number ( M R ) ,  2: 30. This corresponds to a Reynolds number Re 2: w’(Q) d/v 2: 10, 
a value proposed by Moore & Weiss (1973) for the transition from viscous 
to nonlinear flow in the thermal convection problem. It was also shown that the 
extrapolation of the asymptotic state of high M R  values to ( M R ) ,  yielded 
maxw’(z) N +M. At a Reynolds number 2: 10 -the viscous and nonlinear 
terms are of the same order. But the viscous analysis will be rigorously valid 
only up to, say, a Reynolds number of order I, which gives ( M R ) ,  r 10. From 
figure 6, we see that Ne begins to deviate from the law Ti when M R  reaches a 
value of about 12. It can also be deduced from this figure that viscous effects 
become negligible, and that the motion is probably fully turbulent when M R  
is about 180. 

A condition for the validity of the law Ne = (+M)* is that M 3 3. This critical 
value of ill is also obtained from the velocity estimation (w‘ E QM), which 
implies that, when M < 3, the fluid velocity is smaller than the ionic velocity. I n  
this case, the velocity fluctuations may still produce charge fluctuations, but the 
effect on the charge transport will be small, and completely negligible when 
M < 0.1. (A crude analysis then leads to Ne N 1 +yM2.) Clearly, in this case the 
mean charge distribution will hardly be different from the distribution in the 
motionless state. A typical example of this is the corona effect observed in gases 
(already pointed out by FBlici). I n  air, the ionic mobility is about 2 em2 (V s)-l and 
( E / P ) ~  2 2.6 < 3. The critical 
value M = 3 is an upper bound for all gases a t  moderate pressures; it is a lower 
bound for practically all liquids. Only in a few, very special cases can take 
values lower than 3. One example is the injection of H+ions into water, for which 

Of course, the critical value M = 3 has a consequence for the state of motion 
immediately following instability. At the onset of instability, characterized by 
T, N 90, we have 

( M R ) ,  = q/ill; 

cm2(Vs)-l. This gives avalue of M = 1.3 x 

M F 2 - 5 .  
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Thermal convection Electro-convection 
(high Pr numbers) ( M  > 3) 

A 
I 

A 
3 I 3 

Inertial or Inertial or 
Viscous or time-dependent Viscous or time-dependent 
steady flow flow steady flow flow 

Relative flux N u  a Ra)  N u  a Ra0'278t Ne N (g)' Ne N (&M)+ 

Absolute flux Q a (AT)* Q cc (AT)1'278 I = &  I =  Y% 
W w T  

Velocity norm A A = - N Ra% A N +Ra$$ A = -  N -  A N + M  
Kld K A l d  - T, 

Relative flux as N u  cc Af N u  a AWs6 Ne _N A4 N~ N A+ 
function of A 

f From Chu 8: Goldstein (1973), Pr = 7 ;  lo5 < Ra C lo8. 
$ From Malkus (1954); Deardorff & Willis (1967). 

TABLE 2. Comparison of the expressions for the relative flux and velocity 
for the thermal and electro-convection problems 

and, if M < 3, we see that ( M R ) ,  > (MR),. That implies that no stable convective 
motion can be observed. The motion is immediately nonlinear. That behaviour 
is already indicated in chlorobenzene, which has value M N 5, and in which no 
branch Ne a TS i s  distinguishable. 

Finally, a more systematic comparison with the thermal problem reveals some 
interesting aspects. When we look just at the Nusselt number against stability 
parameter relations in both problems, we should be inclined to conclude that the 
basic phenomena in the two problems have li€tle similarity. In  the thermal 
problem, the Nusselt number grows steadily with increasing Rayleigh number, 
and exhibits successive transitions in the power of Ra. By contrast, in the 
electro-convection problem, we observe only one very marked transition, and 
afterwards the electric Nusselt number becomes independent of the stability 
parameter T .  The latter saturation implies that the reference mobility current 
grows a t  the same rate as the convective current. This is because q' a Q, and the 
velocity is proportional to the applied voltage. In  the thermal problem, we have 
roughly 8'cc AT, but w' has a constant reference velocity (for fixed a), so Nu 
grows with w' when AT and thus Ra is increased. Nevertheless, the absolute value 
of the current increases with applied voltage; and its dependence on the stability 
number T or applied voltage $o is stronger than the dependence of the heat flux 
on Ra or AT. A more consistent picture is obtained when the variation of the 
Nussdt number with velocity norm A is examined. The relations 

Nucc A4 and Necc A )  

seem to be valid in both problems, and in both states. These different variations 
are summarized in table 2. It should be noted that, as far as the velocity norm is 
concerned, the true relation is that kinetic energy is proportional to Ra. Only if 
the ratio of the vertically averaged root-mean-square values u' and w' is inde- 
pendent of Ra, may we take A K Rat. In  the problem of time-dependent thermal 
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convection this is not strictly true. Also, t,he relation Nu = f(Ra) in the inertial 
state of motion is a weak function of the Prandtl number. But this dependence is 
included in the coefficient of proportionality. 

At very low Prandtl numbers, the situat,ion is quite different. The dependence 
of the Nusselt number on Pr seems to be stronger. If Pr is low enough, no steady 
flow exists a t  Ra > Rat, and there is a direct transition from the state of no motion 
to  a time-dependent and, depending on the value of Pr, to  a fully turbulent flow. 
The Nusselt number in this case may approach 1 ,  which means that the tempera- 
ture distribution is no longer modified by the motion of the fluid. An equivalent 
situation is observed in the present problem when 144 < 3, as discussed above. 
From this it may be legitimate to conclude that the number M takes the role of 
the Prandtl number, not l /R,  as might be deduced from a comparison of the 
governing equations. 
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FIGURE 9. Schlieren photograph near criticarconditions in pyralene 
1480 (d = 0.3mm). $o E l.l$c, showing hexagonal structure. 

FIGURE 10. Schlieren photograph near critical conditions in pyralene 1460 (d = 0.3 mm). 
$o 2: 2$,, corresponding to  quasi-cellular motion. 
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